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A bhasis relation for boundary layer calculations has been obtained by Y o u
double integration of the Prandtl equations. It is shown that this VU — ﬂ_) y = \ dy L( u’dy) __
method leads 10 more accurate results than the Karman-Pohlhausen dy /o ox
method. ‘ ’ 4
y 14
The Karman-Pohlhausen method is based on the _S udy—‘—a— ( g udy) _yY

integral momentum relation (1): 0x \ ] dc 2

d ’ du ’ 6/

__j‘u(u —wdy= L v —wydy =~ (__u_\) (1) We take into copgderatwn, as was done also in (1),

dx x ) oy Jo the boundary condition of the layer 6 (x).

Putting y = 6 (x), and substituting the expression
The method involves replacement of the unknown

exact velocity distribution in the layer by a specially
chosen distribution satisfying the boundary conditions of (1) the equation
of the problem. It is simple and in a number of cases,
moreover, gives quite accurate results. Its effective-
ness is evidently due to the fact that the values of the
integrals on the left side in (1) do not change much if
the subintegral function departs a little from the true
value, provided the boundary conditions are observed. 5 v (5)
The main source of error of the method is associated vU 1 d YN
with the right side of (1), where there is a derivative 5 ) g udy == (j ud”) T
of the unknown function. When this function is replaced 0 °
by another, arbitrary one, the error in the derivative
may be very considerable. It is for this reason that, | L P y
in a region of pressure increase, and in particular, in + e \ dy -é:( g u’dy) .
locating the separation point of the layer, the Karman- & Y
Pohlhausen method gives quite unreliable results
(leading in some cases to clearly erroneous conclus-
ions, even in a qualitative sense {2]).

The method will be appreciably improved if the Since the velocity profile in this case has simi-
right side of (1) is also put in the form of integrals of
the unknown function u. This may be effected by double
integration of the original Prandtl equations.

found from (4) for «~ (gu_) into (3), we have in place

Y /n

[ [

(u*dy—Ui \udy_l_ufig_sz
J dx | 2 dx
0

FLAT IMPERMEABLE PLATE

larity <u = U,f (G—fr—))}\ , it is easy to put (5) in the

f
The differential equations of the boundary layer orm
have the form Aﬂsf _ v )
o " du | v du U av dx U,
v = —_ - Tt T T
2 0 ) dx
% * v (2) where
ﬁ L .@_ = Q. | \ . \
o oy A=—-{ldn | Pdn — | fdn x
Single integration of the equations of (2) yields o '
v, | 1
u o & 5 ! @ x {Jdw — [ fdn--{fdn).
v—- - (—--—) = —\wdy—u—\ wdy—U—1p.(3) v i d
dy Ay 1, Ox ox 7 ox
' Therefore,

If we put y = « in (3), it is not difficult to obtain _
relation (1). Integrating (3) once more, we have §=4A""] ;\Tn (M)
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We find the friction stress on the plate from the

formula
0 d ;
T _ Yl -2\
e v ( dy )0 dx S b+
[}
(8)
)
vy — By 20
. 0 dx ‘S y [ dx ’
[}
where

1 1
B= jfdn— | Pn.
0 0
According to (7) we obtain

U3
T‘ml/v - @

We will compare the results of calculating a boun-
dary layer by the Karman-Pohlhausen method with
those of the refined method. The table shows values
of 8 and 7y calculated for various distribution functions
according to both methods. Comparison indicates that
the values of § and T calculated by the refined method
are, firstly, closer to the true values than are those
from the Karman-Pohlhausen method, and, secondly
and this is more important in the given case the re-
fined values of 6 and 7y give less scatter and are less
sensitive to the choice of type of distribution function

JFm.
GENERAL CASE OF AN IMPERMEABLE WALL

In the general case the velocity profile losses the
property of similarity. Following the Karman-Pohl-
hausen method, we take into account the shape-factor

L O dU
= ax (10)

and put the solution of (5) in the form

o () +m(5)

Substitution of function (11) into (5) leads, after a
number of simple transformations, to the equation

(11)

(=}

46 12)
M gy,
o v

where M and N are functions of U, dU/dx, A and d\/dx.
If the shape-factor is taken as the basic variable
being sought, Eq. (12) becomes

AA + (Aie -+ C) + (A + B) A —
(13)

— A g—(/ll 4+ A h + A A% -

U n . U
+KT(BI—BIZA'+B2}V2)=T »

where A;, Bj, Aj;, By, C are certain universal num-
bers,
A = (1/2)(er — vi -Fay —Br), A = (1/2) (a2 -~ Y2 — B},

A = (1/2)(es - 2¥12 + 2045 — B12 — Par),

By =1/2 -+ &y — 2y, + 2a, — B1, (14)

By == gy — 4yp + 40, — Brz — P,

B, =20, — 2yg — B2y C =12, — 2y12 - 2010 — Bie.

The numbers «, B3, v, € in (14) are found by simple
integration of functions f and ¢:

\ fd v \ fdn,

i iy

1 1
o= |fdn vi={Pdn p
[ 0

o= {dn{Pdn, &={g¢dy wm= \(P*dn,

< .
0 o 0 0

|
=
(15)

! % ! : 1
B:=l¢dn|gdn, w - |dn|e¢*dn, Yu={fedn,
5 § 4 ;

5

.

1 T, 1

: K ! : Lo
Bax =S(Pd'fl | fdn, Bre= | [d7 {@dn, en= {dn|¢fdn.
d d 6 0 i o

0 Y 0

The function ¢ is a correction tof, and so the
integrals from ¢ are considerably less than those
from f, i.e., the numbers €y, v, B, @y, are con-
siderably greater than the remaining numbers., For
the same reason A; and B, are considerably greater
than the numbers Ay, Ay, By, Bjy, C (this may be
verified directly in the examples). Taking this into
consideration, Eq. (13) may be integrated approxi-
mately, after first omitting terms containing A,, Aj,,
Bj, Byy, C. This leads to the simple linear equation

U U

Al (M——M —U‘> ‘TE'BlI..lT :'—l:,—.

(16)

*The dot denotes differentiation with respect to x.



JOURNAL OF ENGINEERING PHYSICS, VOLUME 9, NUMBER 5 373

Values of 6 and 7, Calculated for Various Distribution Functions

6V VX U %—/l/v Ug/x
Distribution f(n) by Karman- b i g by Karman- by i d
pohihausen {*Y 1}1:1;:]rove Pohlhausen |27 x}r\nozrove
method metho method met
f=n 3.464 4 0.289 0.333
fo 7‘, __% 3 4.64 1.825 0.323 0.336
foe 2y — 23 4t 5.84 5.7 0.343 0.336
i = sin ;_, 4.8 4.911 0.327 0.335
Exact 0.332

This kind of approximation (we shall call it the
first approximation) corresponds to the case ¢ = 0,
The solution of (16) has the form

M= b V LB gy (a7

The friction stress in the first approximation is
calculated from the formula

where
A= (e —vi)2, Bi=1+4¢g — 2y,

Using (18), we find the following equation for the
separation point of the layer:

A g A
ll =}~°‘—= —T:// (Bl_Bl — . (19)

Therefore, in the first approximation the value
A, at the separation point is some universal number,
independent of U(x). This fact may be used in the

g == (174) (1 — ¢ )

The calcualtions show that for the functionf = 271 —
- 27)3 + 1, Ay = —8.95. Assuming also in this case that
A¢ = =9, © must be chosen in the form

o = (1/18)(4n—9n® — 6+ -— '),
In the second approximation
ha = Ay - M (22)
Here A' is a small correction to the first approxima-
tion.

We substitute A in the nonlinear terms of (13) and
write the equation relative to A*:

Al - e+ C 4 (A - B Ashy --

+ (B, —[— —-Ax—~._.—) A — (23)

- [(/412 4 Ak (L (Bys + B:)) —IL !xz . 0.

choice of the function ¢(x). We have to choose ¢ such Calculations show that A, and B, are considerably

that less than Ay, By, C. Therefore terms with A, and B,
, may be omitted in the second approximation. Then,
when A =%, (_di) = 0. (20) taking (16) into account, we find the solution of (23)
oy Ju in the form
In addition, the usual boundary conditions are im- U o B \
posed on ¢, namely: V= —7 \ ![( 2N (A 2-CY— By, )
All/' v JoaL 1‘11
g A 24
(__d__fl_) e — 1, (D=0, ¢(0) =0, ( 7 ) - 0. (21) 2 I i (24)
4 ), o, /) LY 4»-.—]7:1——
U U
For example, if f/ = n, according to (19), Aq = ~4, ‘ )
and ¢ should be chosen, in accordance with (20) and AU WU

(21), in the form vy oM
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Thus, in the second approximation the problem is
reduced to carrying out two successive quadratures
(17) and (24).

Knowing A(x), it is not hard to find T,/p and the
separation point of the layer. This separation point
is determined from the algebraic equation

hy = M (x) + N (x). (25)

It is evidently not hard to generalize the method
suggested in the case of a boundary layer with outflow
of fluid from the wall, and to extend it to the temper-
ature and diffusion boundary layers.

As a very simple example, we will examine the
flow of a fluid near the critical point. In this case
U= U[)X.

Relations (17) and (18) easily allow us to find A
and 7y/p in the first approximation:

M=B, to=BY BrviurU.  (26)
In the case of f (1) = n we have.
M = 813, To/p = .36V USL. @7
In the case f (n) = 2n-21° + 74 we have
M =596, t/p=13lv*U/U. (28)

The exact value is To/p = 1. 234u1/2U01/2U; while
according to6 the Karman-Pohlhausen method 7y /p =
=1.19 /2012y (),

INZHENERNO-FIZICHESKII ZHURNAL, NOVEMBER 1965

Thus, our method in this case leads to satisfactory
results even in the first approximation.

In conclusion we note that the method described
above borders upon Shvets' method (3). All the re-
sults obtained by that method (3—5) may also be ob-
tained by our method. To show this we examine the
first approximation in the very simple assumption
that £ (n) = 7.

For example, the formula in (3)

A= (160/U%) | L%dx

I

is a special case of the general formula (17), under
the assumption that f = 7.
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